Properties of Joint Distributions

Multinomial Distribution

Say you perform n independent trials of an experiment where each trial results in one of m outcomes, with respective probabilities: $p_{1}, p_{2}, \ldots, p_{m}$ (constrained so that $\sum_{i} p_{i}=1$). Define X_{i} to be the number of trials with outcome i. A multinomial distribution is a closed form function that answers the question: What is the probability that there are c_{i} trials with outcome i. Mathematically:

$$
P\left(X_{1}=c_{1}, X_{2}=c_{2}, \ldots, X_{m}=c_{m}\right)=\binom{n}{c_{1}, c_{2}, \ldots, c_{m}} p_{1}^{c_{1}} p_{2}^{c_{2}} \ldots p_{m}^{c_{m}}
$$

Example 1

A 6 -sided die is rolled 7 times. What is the probability that you roll: 1 one, 1 two, 0 threes, 2 fours, 0 fives, 3 sixes (disregarding order).

$$
\begin{aligned}
P\left(X_{1}=1, X_{2}=1\right. & \left., X_{3}=0, X_{4}=2, X_{5}=0, X_{6}=3\right)=\frac{7!}{2!3!}\left(\frac{1}{6}\right)^{1}\left(\frac{1}{6}\right)^{1}\left(\frac{1}{6}\right)^{0}\left(\frac{1}{6}\right)^{2}\left(\frac{1}{6}\right)^{0}\left(\frac{1}{6}\right)^{3} \\
= & 420\left(\frac{1}{6}\right)^{7}
\end{aligned}
$$

Expectation with Multiple RVs

Expectation over a joint isn't nicely defined because it is not clear how to compose the multiple variables. However, expectations over functions of random variables (for example sums or multiplications) are nicely defined: $E[g(X, Y)]=\sum_{x, y} g(x, y) p(x, y)$ for any function $g(X, Y)$. When you expand that result for the function $g(X, Y)=X+Y$ you get a beautiful result:

$$
\begin{aligned}
E[X+Y]=E[g(X, Y)] & =\sum_{x, y} g(x, y) p(x, y)=\sum_{x, y}[x+y] p(x, y) \\
& =\sum_{x, y} x p(x, y)+\sum_{x, y} y p(x, y) \\
& =\sum_{x} x \sum_{y} p(x, y)+\sum_{y} y \sum_{x} p(x, y) \\
& =\sum_{x} x p(x)+\sum_{y} y p(y) \\
& =E[X]+E[Y]
\end{aligned}
$$

This can be generalized to multiple variables:

$$
E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]
$$

Independence with Multiple RVs

Discrete

Two discrete random variables X and Y are called independent if:

$$
P(X=x, Y=y)=P(X=x) P(Y=y) \text { for all } x, y
$$

Intuitively: knowing the value of X tells us nothing about the distribution of Y. If two variables are not independent, they are called dependent. This is a similar conceptually to independent events, but we are dealing with multiple variables. Make sure to keep your events and variables distinct.

Continuous

Two continuous random variables X and Y are called independent if:

$$
P(X \leq a, Y \leq b)=P(X \leq a) P(Y \leq b) \text { for all } a, b
$$

This can be stated equivalently as:

$$
\begin{aligned}
& F_{X, Y}(a, b)=F_{X}(a) F_{Y}(b) \text { for all } a, b \\
& f_{X, Y}(a, b)=f_{X}(a) f_{Y}(b) \text { for all } a, b
\end{aligned}
$$

More generally, if you can factor the joint density function then your continuous random variable are independent:

$$
f_{X, Y}(x, y)=h(x) g(y) \text { where }-\infty<x, y<\infty
$$

Example 2

Let N be the \# of requests to a web server/day and that $N \sim \operatorname{Poi}(\lambda)$. Each request comes from a human (probability $=p$) or from a "bot" (probability $=(1-p)$), independently. Define X to be the $\#$ of requests from humans/day and Y to be the \# of requests from bots/day.

Since requests come in independently, the probability of X conditioned on knowing the number of requests is a Binomial. Specifically:

$$
\begin{aligned}
& (X \mid N) \sim \operatorname{Bin}(N, p) \\
& (Y \mid N) \sim \operatorname{Bin}(N, 1-p)
\end{aligned}
$$

Calculate the probability of getting exactly i human requests and j bot requests. Start by expanding using the chain rule:

$$
P(X=i, Y=j)=P(X=i, Y=j \mid X+Y=i+j) P(X+Y=i+j)
$$

We can calculate each term in this expression:

$$
\begin{aligned}
& P(X=i, Y=j \mid X+Y=i+j)=\binom{i+j}{i} p^{i}(1-p)^{j} \\
& P(X+Y=i+j)=e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!}
\end{aligned}
$$

Now we can put those together and simplify:

$$
P(X=i, Y=j)=\binom{i+j}{i} p^{i}(1-p)^{j} e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!}
$$

As an exercise you can simplify this expression into two independent Poisson distributions.

Symmetry of Independence

Independence is symmetric. That means that if random variables X and Y are independent, X is independent of Y and Y is independent of X. This claim may seem meaningless but it can be very useful. Imagine a sequence of events X_{1}, X_{2}, \ldots Let A_{i} be the event that X_{i} is a "record value" (eg it is larger than all previous values). Is A_{n+1} independent of A_{n} ? It is easier to answer that A_{n} is independent of A_{n+1}. By symmetry of independence both claims must be true.

